199 research outputs found

    Linear-time list recovery of high-rate expander codes

    Full text link
    We show that expander codes, when properly instantiated, are high-rate list recoverable codes with linear-time list recovery algorithms. List recoverable codes have been useful recently in constructing efficiently list-decodable codes, as well as explicit constructions of matrices for compressive sensing and group testing. Previous list recoverable codes with linear-time decoding algorithms have all had rate at most 1/2; in contrast, our codes can have rate 1ϵ1 - \epsilon for any ϵ>0\epsilon > 0. We can plug our high-rate codes into a construction of Meir (2014) to obtain linear-time list recoverable codes of arbitrary rates, which approach the optimal trade-off between the number of non-trivial lists provided and the rate of the code. While list-recovery is interesting on its own, our primary motivation is applications to list-decoding. A slight strengthening of our result would implies linear-time and optimally list-decodable codes for all rates, and our work is a step in the direction of solving this important problem

    Capacity of non-malleable codes

    Get PDF
    Non-malleable codes, introduced by Dziembowski et al., encode messages s in a manner, so that tampering the codeword causes the decoder to either output s or a message that is independent of s. While this is an impossible goal to achieve against unrestricted tampering functions, rather surprisingly non-malleable coding becomes possible against every fixed family P of tampering functions that is not too large (for instance, when I≤I 22αn for some α 0 and family P of size 2nc, in particular tampering functions with, say, cubic size circuits

    Approximate Hypergraph Coloring under Low-discrepancy and Related Promises

    Get PDF
    A hypergraph is said to be χ\chi-colorable if its vertices can be colored with χ\chi colors so that no hyperedge is monochromatic. 22-colorability is a fundamental property (called Property B) of hypergraphs and is extensively studied in combinatorics. Algorithmically, however, given a 22-colorable kk-uniform hypergraph, it is NP-hard to find a 22-coloring miscoloring fewer than a fraction 2k+12^{-k+1} of hyperedges (which is achieved by a random 22-coloring), and the best algorithms to color the hypergraph properly require n11/k\approx n^{1-1/k} colors, approaching the trivial bound of nn as kk increases. In this work, we study the complexity of approximate hypergraph coloring, for both the maximization (finding a 22-coloring with fewest miscolored edges) and minimization (finding a proper coloring using fewest number of colors) versions, when the input hypergraph is promised to have the following stronger properties than 22-colorability: (A) Low-discrepancy: If the hypergraph has discrepancy k\ell \ll \sqrt{k}, we give an algorithm to color the it with nO(2/k)\approx n^{O(\ell^2/k)} colors. However, for the maximization version, we prove NP-hardness of finding a 22-coloring miscoloring a smaller than 2O(k)2^{-O(k)} (resp. kO(k)k^{-O(k)}) fraction of the hyperedges when =O(logk)\ell = O(\log k) (resp. =2\ell=2). Assuming the UGC, we improve the latter hardness factor to 2O(k)2^{-O(k)} for almost discrepancy-11 hypergraphs. (B) Rainbow colorability: If the hypergraph has a (k)(k-\ell)-coloring such that each hyperedge is polychromatic with all these colors, we give a 22-coloring algorithm that miscolors at most kΩ(k)k^{-\Omega(k)} of the hyperedges when k\ell \ll \sqrt{k}, and complement this with a matching UG hardness result showing that when =k\ell =\sqrt{k}, it is hard to even beat the 2k+12^{-k+1} bound achieved by a random coloring.Comment: Approx 201

    Core-competitive Auctions

    Full text link
    One of the major drawbacks of the celebrated VCG auction is its low (or zero) revenue even when the agents have high value for the goods and a {\em competitive} outcome could have generated a significant revenue. A competitive outcome is one for which it is impossible for the seller and a subset of buyers to `block' the auction by defecting and negotiating an outcome with higher payoffs for themselves. This corresponds to the well-known concept of {\em core} in cooperative game theory. In particular, VCG revenue is known to be not competitive when the goods being sold have complementarities. A bottleneck here is an impossibility result showing that there is no auction that simultaneously achieves competitive prices (a core outcome) and incentive-compatibility. In this paper we try to overcome the above impossibility result by asking the following natural question: is it possible to design an incentive-compatible auction whose revenue is comparable (even if less) to a competitive outcome? Towards this, we define a notion of {\em core-competitive} auctions. We say that an incentive-compatible auction is α\alpha-core-competitive if its revenue is at least 1/α1/\alpha fraction of the minimum revenue of a core-outcome. We study the Text-and-Image setting. In this setting, there is an ad slot which can be filled with either a single image ad or kk text ads. We design an O(lnlnk)O(\ln \ln k) core-competitive randomized auction and an O(ln(k))O(\sqrt{\ln(k)}) competitive deterministic auction for the Text-and-Image setting. We also show that both factors are tight

    Heavy Hitters and the Structure of Local Privacy

    Full text link
    We present a new locally differentially private algorithm for the heavy hitters problem which achieves optimal worst-case error as a function of all standardly considered parameters. Prior work obtained error rates which depend optimally on the number of users, the size of the domain, and the privacy parameter, but depend sub-optimally on the failure probability. We strengthen existing lower bounds on the error to incorporate the failure probability, and show that our new upper bound is tight with respect to this parameter as well. Our lower bound is based on a new understanding of the structure of locally private protocols. We further develop these ideas to obtain the following general results beyond heavy hitters. \bullet Advanced Grouposition: In the local model, group privacy for kk users degrades proportionally to k\approx \sqrt{k}, instead of linearly in kk as in the central model. Stronger group privacy yields improved max-information guarantees, as well as stronger lower bounds (via "packing arguments"), over the central model. \bullet Building on a transformation of Bassily and Smith (STOC 2015), we give a generic transformation from any non-interactive approximate-private local protocol into a pure-private local protocol. Again in contrast with the central model, this shows that we cannot obtain more accurate algorithms by moving from pure to approximate local privacy

    Optimal CUR Matrix Decompositions

    Full text link
    The CUR decomposition of an m×nm \times n matrix AA finds an m×cm \times c matrix CC with a subset of c<nc < n columns of A,A, together with an r×nr \times n matrix RR with a subset of r<mr < m rows of A,A, as well as a c×rc \times r low-rank matrix UU such that the matrix CURC U R approximates the matrix A,A, that is, ACURF2(1+ϵ)AAkF2 || A - CUR ||_F^2 \le (1+\epsilon) || A - A_k||_F^2, where .F||.||_F denotes the Frobenius norm and AkA_k is the best m×nm \times n matrix of rank kk constructed via the SVD. We present input-sparsity-time and deterministic algorithms for constructing such a CUR decomposition where c=O(k/ϵ)c=O(k/\epsilon) and r=O(k/ϵ)r=O(k/\epsilon) and rank(U)=k(U) = k. Up to constant factors, our algorithms are simultaneously optimal in c,r,c, r, and rank(U)(U).Comment: small revision in lemma 4.

    Non-malleable coding against bit-wise and split-state tampering

    Get PDF
    Non-malleable coding, introduced by Dziembowski et al. (ICS 2010), aims for protecting the integrity of information against tampering attacks in situations where error detection is impossible. Intuitively, information encoded by a non-malleable code either decodes to the original message or, in presence of any tampering, to an unrelated message. Non-malleable coding is possible against any class of adversaries of bounded size. In particular, Dziembowski et al. show that such codes exist and may achieve positive rates for any class of tampering functions of size at most (Formula presented.), for any constant (Formula presented.). However, this result is existential and has thus attracted a great deal of subsequent research on explicit constructions of non-malleable codes against natural classes of adversaries. In this work, we consider constructions of coding schemes against two well-studied classes of tampering functions; namely, bit-wise tampering functions (where the adversary tampers each bit of the encoding independently) and the much more general class of split-state adversaries (where two independent adversaries arbitrarily tamper each half of the encoded sequence). We obtain the following results for these models. (1) For bit-tampering adversaries, we obtain explicit and efficiently encodable and decodable non-malleable codes of length n achieving rate (Formula presented.) and error (also known as “exact security”) (Formula presented.). Alternatively, it is possible to improve the error to (Formula presented.) at the cost of making the construction Monte Carlo with success probability (Formula presented.) (while still allowing a compact description of the code). Previously, the best known construction of bit-tampering coding schemes was due to Dziembowski et al. (ICS 2010), which is a Monte Carlo construction achieving rate close to .1887. (2) We initiate the study of seedless non-malleable extractors as a natural variation of the notion of non-malleable extractors introduced by Dodis and Wichs (STOC 2009). We show that construction of non-malleable codes for the split-state model reduces to construction of non-malleable two-source extractors. We prove a general result on existence of seedless non-malleable extractors, which implies that codes obtained from our reduction can achieve rates arbitrarily close to 1 / 5 and exponentially small error. In a separate recent work, the authors show that the optimal rate in this model is 1 / 2. Currently, the best known explicit construction of split-state coding schemes is due to Aggarwal, Dodis and Lovett (ECCC TR13-081) which only achieves vanishing (polynomially small) rate

    How to Play Unique Games on Expanders

    Full text link
    In this note we improve a recent result by Arora, Khot, Kolla, Steurer, Tulsiani, and Vishnoi on solving the Unique Games problem on expanders. Given a (1ε)(1-\varepsilon)-satisfiable instance of Unique Games with the constraint graph GG, our algorithm finds an assignment satisfying at least a 1Cε/hG1- C \varepsilon/h_G fraction of all constraints if ε<cλG\varepsilon < c \lambda_G where hGh_G is the edge expansion of GG, λG\lambda_G is the second smallest eigenvalue of the Laplacian of GG, and CC and cc are some absolute constants

    Complexity of Decoding Positive-Rate Reed-Solomon Codes

    Full text link
    The complexity of maximal likelihood decoding of the Reed-Solomon codes [q1,k]q[q-1, k]_q is a well known open problem. The only known result in this direction states that it is at least as hard as the discrete logarithm in some cases where the information rate unfortunately goes to zero. In this paper, we remove the rate restriction and prove that the same complexity result holds for any positive information rate. In particular, this resolves an open problem left in [4], and rules out the possibility of a polynomial time algorithm for maximal likelihood decoding problem of Reed-Solomon codes of any rate under a well known cryptographical hardness assumption. As a side result, we give an explicit construction of Hamming balls of radius bounded away from the minimum distance, which contain exponentially many codewords for Reed-Solomon code of any positive rate less than one. The previous constructions only apply to Reed-Solomon codes of diminishing rates. We also give an explicit construction of Hamming balls of relative radius less than 1 which contain subexponentially many codewords for Reed-Solomon code of rate approaching one
    corecore